

Reference List of all relevant peer-reviewed publications from the open literature that were submitted for the Renewal of Approval (AIR5) of Glyphosate in 2020

Metabolism and residue data

The following table lists the relevant publications from the open literature that were selected for inclusion in the renewal dossier as per Article 8.5 of Regulation (EC) No 1107/2009.

A literature search for glyphosate and its metabolites¹ was conducted according to the requirements stated in the EFSA Guidance document EFSA Journal 2011;9(2):2092 "Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) 1107/2009". In addition, a recommendation by the Assessment Group on Glyphosate (AGG) on how to present the literature search in the dossier has been followed.

The objective of the literature search was to identify and assess scientific peer-reviewed open literature published within the 10 years prior to the dossier submission date for relevance in the risk assessment of glyphosate and its metabolites regarding toxicity, ecotoxicity, environmental and consumer risk as specified in Article 8.5 of Regulation (EC) No 1107/2009.

The publications were legally obtained by the Glyphosate Renewal Group from the public literature respecting in full all copyrights and are included in Document K.

¹ (aminomethyl)phosphonic acid (AMPA), N-acetyl-AMPA, N-acetyl-glyphosate, (hydroxymethyl)phosphonic acid (HMPA), N-methyl-AMPA, N-glyceryl-AMPA, N-malonyl-AMPA, methylphosphonic acid and N-methylglyphosate.

Section 4 - Metabolism and residue data

Data requirement (indicated by the corresponding CA / CP data point number)	Author(s)	Year	Title	Source
KCA 6.2.1	Tong M. et al.	2017	Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.).	Journal of agricultural and food chemistry (2017), Vol. 65, No. 35, pp. 7638
KCA 6.2.1	Wood L. J.	2019	The presence of glyphosate in forest plants with different life strategies one year after application.	Canadian Journal of Forest Research (2019), Vol. 49, No. 6, pp. 586
KCA 6.4	Ackermann W. et al.	2015	The influence of glyphosate on the microbiota and production of botulinum neurotoxin during ruminal fermentation.	Current microbiology (2015), Vol. 70, No. 3, pp. 374.
KCA 6.4	Bote K. et al.	2019	Effect of a Glyphosate-Containing Herbicide on Escherichia coli and Salmonella Ser. Typhimurium in an In Vitro Rumen Simulation System.	European journal of microbiology & immunology, (2019), Vol. 9, No. 3, pp. 94
KCA 6.4	Gerlach H. et al.	2014	Oral application of charcoal and humic acids to dairy cows influences Clostridium botulinum blood serum antibody level and glyphosate excretion in urine.	Journal of Clinical Toxicology (2014), Vol. 4, No. 2, pp. 186
KCA 6.4	Nielsen L. N. c. r. et al.	2017	Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels	Environmental pollution (2018), Vol. 233, pp. 364
KCA 6.4	Riede S. et al.	2016	Investigations on the possible impact of a glyphosate-containing herbicide on ruminal metabolism and bacteria in vitro by means of the 'Rumen Simulation Technique'.	Journal of applied microbiology (2016), Vol. 121, No. 3, pp. 644
KCA 6.4	Schrodl W. et al.	2014	Possible effects of glyphosate on Mucorales abundance in the rumen of dairy cows in Germany.	Current microbiology (2014), Vol. 69, No. 6, pp. 817
KCA 6.4	Shehata A. A. et al.	2014	Neutralization of the antimicrobial effect of glyphosate by humic acid in vitro.	Chemosphere (2014), Vol. 104, pp. 258
KCA 6.4	Shehata A. A. et al.	2013	The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro.	Current microbiology (2013), Vol. 66, No. 4, pp. 350
KCA 6.4	Vicini J. L. et al.	2019	Glyphosate in livestock: feed residues and animal health.	Journal of animal science (2019), Vol. 97, No. 11, pp. 4509
KCA 6.4.1	Shehata A. A. et al.	2014	Distribution of Glyphosate in Chicken Organs and its Reduction by Humic Acid Supplementation.	Journal of Poultry Science (2014) Vol. 51, No. 3, pp. 333
KCA 6.4.2	Schnabel K. et al.	2017	Effects of glyphosate residues and different concentrate feed proportions on performance, energy metabolism and health characteristics in lactating dairy cows.	Archives of animal nutrition (2017) Vol. 71, No. 6, pp. 413

Data requirement (indicated by the corresponding CA / CP data point number)	Author(s)	Year	Title	Source
KCA 6.4.2	Shelver W. L. et al.	2018	Distribution of Chemical Residues among Fat, Skim, Curd, Whey, and Protein Fractions in Fortified, Pasteurized Milk	ACS Omega (2018,) Vol. 3, No. 8, pp. 8697
KCA 6.4.2	von Soosten D. et al.	2016	Excretion pathways and ruminal disappearance of glyphosate and its degradation product aminomethylphosphonic acid in dairy cows.	Journal of dairy science (2016), Vol. 99, No. 7, pp. 5318
KCA 6.4.2	Tongo I. et al.	2015	Human health risks associated with residual pesticide levels in edible tissues of slaughtered cattle in Benin City, Southern Nigeria.	Toxicology Reports (2015), Vol. 2, pp. 1117
KCA 6.5	Clair E. et al.	2012	Effects of Roundup([®]) and glyphosate on three food microorganisms: Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus.	Current microbiology (May), Vol. 64, No. 5, pp. 486
KCA 6.5.3	Chiarello M. et al.	2019	Fast analysis of glufosinate, glyphosate and its main metabolite, aminomethylphosphonic acid, in edible oils, by liquid chromatography coupled with electrospray tandem mass spectrometry.	Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment (2019), Vol. 36, No. 9, pp. 1376
KCA 6.9	Zoller O. et al.	2018	Glyphosate residues in Swiss market foods: monitoring and risk evaluation.	Food additives & contaminants. Part B, Surveillance (2018), Vol. 11, No. 2, pp. 83.
KCA 6.9	Ehling S. et al.	2015	Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography- Mass Spectrometry.	Journal of agricultural and food chemistry (2015), Vol. 63, No. 48, pp. 10562
KCA 6.9	Jansons M. et al.	2018	Occurrence of glyphosate in beer from the Latvian market.	Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment (2018), Vol. 35, No. 9, pp. 1767
KCA 6.9	Larsson M. O. et al.	2017	Quantifying dietary exposure to pesticide residues using spraying journal data	Food and Chemical Toxicology (2017), Vol. 105, pp. 407
KCA 6.9	Larsson M. O. et al.	2018	Refined assessment and perspectives on the cumulative risk resulting from the dietary exposure to pesticide residues in the Danish population	Food and Chemical Toxicology (2018), Vol. 111, pp. 207
KCA 6.9	Liao Y. et al.	2018	Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry.	Journal of chromatography. A (2018), Vol. 1549, pp. 31
KCA 6.9	McQueen H. et al.	2012	Estimating maternal and prenatal exposure to glyphosate in the community setting.	International journal of hygiene and environmental health (2012), Vol. 215, No. 6, pp. 570

Data requirement (indicated by the corresponding CA / CP data point number)	Author(s)	Year	Title	Source
KCA 6.9	Poulsen M. E. et al.	2017	Results from the Danish monitoring programme for pesticide residues from the period 2004-2011	Food Control (2017), Vol. 74, pp. 25
KCA 6.9	Skretteberg L. G. et al.	2015	Pesticide residues in food of plant origin from Southeast Asia - A Nordic project	Food Control (2015), Vol. 51, pp. 225
KCA 6.9	Stephenson C. L. et al.	2016	An assessment of dietary exposure to glyphosate using refined deterministic and probabilistic methods.	Food and chemical toxicology (2016), Vol. 95, pp. 28
KCA 6.10.1	Berg C. J. et al.	2018	Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees.	PloS one (2018), Vol. 13, No. 7, pp. 0198876
KCA 6.10.1	Chiesa L. M. et al.	2019	Detection of glyphosate and its metabolites in food of animal origin based on ion-chromatography-high resolution mass spectrometry (IC- HRMS).	Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment (2019) Vol. 36, No. 4, pp. 592
KCA 6.10.1	El Agrebi N. et al.	2020	Honeybee and consumer's exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey.	The Science of the total environment, (2020), Vol. 704, pp. 135312
KCA 6.10.1	Karise R. et al.	2017	Are pesticide residues in honey related to oilseed rape treatments?.	Chemosphere (2017 Dec), Vol. 188, pp. 389
KCA 6.10.1	Rubio F. et al.	2014	Survey of Glyphosate Residues in Honey, Corn and Soy Products	Journal of Environmental and Analytical Toxicology (2014), Vol. 5, pp. 249
KCA 6.10.1	Thompson T. S et al.	2019	Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry.	Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment (2019) Vol. 36, No. 3, pp. 434
KCA 6.10.1	Cebotari V. et al.	2018	Content of pesticide residues in the flowers of the acacia and linden trees from the Moldavian Codri area.	Scientific Papers, Series D. Animal Science (2018), Vol. 61, No. 2, pp. 235
KCA 6.10.1	Ledoux M. L. et al.	2020	Penetration of glyphosate into the food supply and the incidental impact on the honey supply and bees.	Food Control (2020), Vol. 109, pp. 106859
KCA 6.10.1	Pareja L. et al.	2019	Evaluation of glyphosate and AMPA in honey by water extraction followed by ion chromatography mass spectrometry. A pilot monitoring study	Analytical methods (2019), Vol. 11, No. 16, pp. 2123
KCA 6.10.1	Raimets R. et al.	2020	Pesticide residues in beehive matrices are dependent on collection time and matrix type but independent of proportion of foraged oilseed rape and agricultural land in foraging territory	Chemosphere (2020), Vol. 238, pp. 124555
KCA 6.10.1	Thompson H. M. et al.	2014	Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example.	Integrated environmental assessment and management (2014), Vol. 10, No. 3, pp. 463

Data requirement (indicated by the corresponding CA / CP data point number)	Author(s)	Year	Title	Source
KCA 6.10.1	Umsza-Guez M. A.	2019	Herbicide determination in Brazilian propolis using high pressure	International journal of environmental health
	et al.		liquid chromatography.	research (2019) pp. 1 (Ahead of print)